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Space charge presents a fundamental limitation to high intensity circular accelerators. Its effects are
especially important in the latest designs for high-intensity proton rings, which require beam losses much
smaller than presently achieved in existing facilities. It is therefore necessary to understand the major
space-charge effects which could lead to emittance growth and associated beam loss. In this paper,
we explore the excitation of high-order collective beam modes and associated instabilities driven by
space-charge coupling resonances. Such studies help us to understand energy exchange and emittance
growth driven by space-charge coupling. They also have direct application to the choice of a good
working point in a high-intensity machine. The studies are performed using an earlier version of the
Spallation Neutron Source lattice, which was used as a generic example of a circular machine. In this
way, we explore the nature of the observed space-charge coupling effect and its applicability to high-
intensity rings in general.
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I. INTRODUCTION

Our studies were stimulated by the fourth order reso-
nance structure observed in simulations with a KV beam
for a previous version of the Spallation Neutron Source
(SNS) lattice [1]. The observed structure was attributed to
a resonance with harmonic N � 23. However, the SNS
lattice has superperiodicity equal to 4, and, thus, the ap-
pearance of harmonic 23 in the absence of magnet errors
is not expected. We have therefore undertaken a detailed
study of this issue in an attempt to explain the nature of
the observed resonance [1].

Starting with a simple frequency analysis (see the Ap-
pendix) of the simulation in question, we confirm that har-
monic 23 is not present. Further simulations demonstrate
that the observed structure is not associated with a spe-
cific tune but instead is driven by nonlinear space-charge
x-y coupling. This conclusion is followed by a system-
atic study of the coupling resonance for different tunes,
which results in the observation of instabilities for vari-
ous high-order beam modes. These instabilities and the
corresponding resonances were recently described by Hof-
mann analytically [2] and confirmed numerically [3] with
reference to a high-intensity linear accelerator in a very
different space-charge regime from the one of interest in
rings. Understanding the impact of these instabilities on
emittance growth is very important for high-intensity cir-
cular machines. It becomes of special interest since the
region near the nx � ny resonance line is the largest re-
gion free of low-order magnet imperfection resonances. In
this paper, we present a detailed numerical investigation
of the excitation of these high-order collective modes for
beam parameters of an earlier version of the SNS accumu-
lator ring [4]. We note that a special feature of the SNS
1098-4402�01�4(8)�084202(11)$15.00
is multiturn injection with final full intensity reached just
before extraction, without subsequent storage of the beam.
As a result, the studies presented here, which are based
on full-intensity beams, are not directly applicable to the
SNS, but they may be relevant to other accelerators with
long-time beam storage.

II. EXCITATION OF HIGH-ORDER MODES IN
THE PRESENCE OF SPACE-CHARGE COUPLING

Most of our studies were performed using the ORBIT code
[5]. First, we reproduced the fourth order beam structure
for a �nx , ny� � �5.82, 5.79� working point. Exploration
of this structure shows that it is not related to any reso-
nance with the lattice harmonic. Instead, we observed ex-
citation of the fourth order collective beam mode V4 (see
the Appendix). This mode is excited only in the presence
of x-y coupling. The bandwidth of this coupling reso-
nance and its effect on excitation of the V4 mode are thor-
oughly investigated and summarized in Fig. 1, which plots
the changes in saturated horizontal and vertical rms emit-
tances as a function of ny for nx � 5.82. The initial rms
emittances are both 30p mm mrad, and the figure shows
an overall width of about dny � 0.1. Such a small band-
width is due to the very weak (few percent) tune depres-
sion which is typical in high-intensity rings. Figure 1 also
shows energy exchange for slightly nonequipartitioned ini-
tial distributions. We note that simulations were performed
for the unbunched KV beam with a small energy spread
Dp�p � 0.7%, which accounts for some asymmetry of
the resonant exchange in Fig. 1.

We then consider various combinations of tunes, and
observe excitation of high-order collective modes when the
© 2001 The American Physical Society 084202-1
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FIG. 1. (Color) The change of the horizontal and vertical rms
emittances as a function of zero-current tune ny for fixed
nx � 5.82.

coupling is strong. In fact, both the third and fourth order
modes are observed, which agrees with the theoretical de-
scription for a KV beam [2]. In all cases, we perform a fre-
quency analysis which demonstrates that these resonances
do not occur at the betatron lattice harmonics. Rather, we
observe an excitation of the corresponding mth order co-
herent modes, as confirmed by the frequency content.

Various combinations of working points

We now demonstrate the excitation of high-order modes
for various working points. Following a discussion with
Hofmann [6], the excitation of third or fourth order modes
is not related to the tunes, but is rather determined by the
asymmetries contained in the numerically generated initial
distribution and by the slightly different beam parameters
resulting from the rms matching procedure. We should
also note that, for our beam parameters, the unstable re-
gions [2] of the fourth order modes are more pronounced
than those of the third order modes. Here we do not dis-
cuss the classification of the modes which become unstable
and refer the interested reader to Ref. [2].

1. (nx,ny) 5 (5.82, 5.79)

In this example, we demonstrate the resonance effect
associated with an excitation of the coherent beam mode by
providing a set of figures: time evolution of rms emittances
and beam moments, frequency analysis of beam moments
and phase-space plots. For other examples only selected
figures from this set are shown.

For this working point, we observe a fourth order reso-
nance structure in the vertical plane around 400 turns. The
working point �nx , ny� � �5.82, 5.79� results in depressed
tunes around �n̄x , n̄y� � �5.75, 5.72�. With rms emittances
ẽx � ẽy , for ny , nx , the vertical beam size b is larger
than the horizontal beam size a, and the beam temperature
Ty � eyny , Tx � exnx . For ny � 5.79, analytic the-
084202-2
ory [2] predicts a frequency for the antisymmetric fourth
order beam mode of V4 � 22.8. Frequency analysis of
the time evolution of the fourth order moment �y4� in the
simulation also shows a peak at this frequency, as can be
seen in Fig. 2. The time evolution of rms emittances, sec-
ond order moments, and fourth order moments are shown
in Figs. 3–5, respectively. These clearly show the en-
ergy exchange facilitated by the strong coupling, and the
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FIG. 2. Spectrum of the fourth order moments �y4� at 375
turns for �nx , ny� � �5.82, 5.79�.
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FIG. 3. (Color) Time evolution of rms emittance for �nx , ny� �
�5.82, 5.79�. X emittance is shown in blue and Y emittance
in red.

200 400 600 800 1000
Number of turns

26

28

30

32

34

36

38

40

Se
co

nd
or

de
r

m
om

en
ts

FIG. 4. (Color) Time evolution of �x2� (blue) and �y2� (red) for
�nx , ny� � �5.82, 5.79� in normalized units.
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excitation of the fourth order mode is also clear in the
�y4� moments. Figure 6 shows the fourth order mode al-
ready developed by 375 turns. At a later stage, individual
particles resonate with this collective mode, as shown in
Fig. 7, at 500 turns.
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FIG. 5. (Color) Time evolution of �x4� (blue) and �y4� (red) for
�nx , ny� � �5.82, 5.79� in normalized units.
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FIG. 6. (Color) Y-Py phase-space plot at 375 turns for
�nx , ny� � �5.82, 5.79�.
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FIG. 7. (Color) Y-Py phase-space plot at 500 turns for
�nx , ny� � �5.82, 5.79�.
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2. (nx,ny) 5 (5.57, 5.54)

In this case, we observe a third order resonance struc-
ture in the vertical plane around 400 turns. For ny � 5.54,
analytic theory predicts V3 � 16.4. Frequency analysis
of the time evolution of �y3� also shows a peak at this fre-
quency, as can be seen in Fig. 8. The time evolution of rms
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FIG. 8. Spectrum of �y3� at 375 turns for �nx , ny� �
�5.57, 5.54�.
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FIG. 9. (Color) Time evolution of rms emittance for �nx , ny� �
�5.57, 5.54�. X emittance is shown in blue and Y emittance is
shown in red.
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FIG. 10. (Color) Time evolution of �x3� (red) and �y3� (blue)
for �nx , ny� � �5.57, 5.54� in normalized units.
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emittances and third order moments are shown in Figs. 9
and 10, respectively. Again, the energy exchange and exci-
tation of the third order coherent mode via coupling reso-
nance are clear. The corresponding y-y0 phase-space plot
reveals the third order structure.

3. (nx,ny) 5 (5.82, 5.86)

Here, we observe a third order resonance structure in the
horizontal plane. With equal initial emittances in the two
planes and nx , ny , we have Ty � eyny . Tx � exnx .
For nx � 5.82, analytic theory predicts V3 � 17.3. Fre-
quency analysis of the time evolution of �x3� in simula-
tions also shows a peak at this frequency, as can be seen in
Fig. 11. The time evolution of the rms emittances and third
order moments are shown in Figs. 12 and 13, respectively.
The emittance evolution demonstrates the expected energy
exchange, and the third order moments dramatically illus-
trate the instability.

This case of an odd order mode excitation is similar to
the one presented by Hofmann [3]. The vertical beam size
is still larger than the horizontal beam size but, as stated
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FIG. 11. Spectrum of �x3� at 375 turns for �nx , ny� �
�5.82, 5.86�.
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FIG. 12. (Color) Time evolution of rms emittance for �nx , ny� �
�5.82, 5.86�. X emittance is shown blue and Y emittance is
shown in red.
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FIG. 13. (Color) Time evolution of �x3� (blue) and �y3� (red)
for �nx , ny� � �5.82, 5.86� in normalized units.
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FIG. 14. (Color) X-Px phase-space plot at 375 turns for
�nx , ny� � �5.82, 5.86�.

above, Tx , Ty , which leads to the deformation of beam
envelopes and excitation of the third order odd mode. A
corresponding phase-space plot of x-x0 from the present
simulation at 375 turns is shown in Fig. 14.

4. (nx,ny) 5 (5.74, 5.71)

For this working point, we first observe a fourth order
resonance structure in the vertical plane after about
300 turns and subsequent development of a third order
structure after 600 turns.With ny � 5.71, analytic theory
predicts V3 � 22.5. Frequency analysis of the time
evolution of �y4� around 375 turns in the simulation
shows a peak exactly at this frequency, as can be seen
in Fig. 15. Similarly, for ny � 5.71, the frequency
of the third order coherent mode is V3 � 16.9. Fre-
quency analysis of the time evolution of �y3� at 1000
turns in simulations shows a peak at this frequency,
as can be seen in Fig. 16. Corresponding phase-space
structures can be seen in Figs. 17 and 18 at 375 and
1000 turns, respectively. The time evolution of the rms
084202-4
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FIG. 15. Spectrum of �y4� at 375 turns for �nx , ny� �
�5.74, 5.71�.
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FIG. 16. Spectrum of �y3� at 1000 turns for �nx , ny� �
�5.74, 5.71�.
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FIG. 17. (Color) Y-Py phase-space plot at 375 turns for
�nx , ny� � �5.74, 5.71�.

emittances, third order moments, and fourth order mo-
ments show that the excitation of the fourth order moments
precedes that of the third order moments. This case demon-
strates that both even and odd modes can be excited.
084202-5
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FIG. 18. (Color) Y-Py phase-space plot at 1000 turns for
�nx , ny� � �5.74, 5.71�.

III. EXCITATION OF ODD ORDER MODES

Despite the fact that the KV distribution has global sym-
metry, one may excite both odd and even order modes
when this distribution is perturbed. For a numerically gen-
erated KV beam, it is not surprising that small initial asym-
metries can lead to an excitation of odd order modes and
become amplified in the instability process, as described
in [2]. Thus, one would expect that odd order modes can
be excited when the parameters are inside the instability
region, and some asymmetry is present in the initial distri-
bution. To confirm this expectation, we considered a case
in which an odd order mode became excited. We recalcu-
lated this case with one change only: we forced the ini-
tial distribution to be exactly symmetric in the distribution
generator, with all other parameters kept fixed. The result-
ing excitation contained only even modes, and the initial
symmetry was precisely preserved. Because the growth
rate of these instabilities increases with intensity, it is pos-
sible to observe the excitation of high-order modes on
much shorter time scales by increasing the beam intensity.
This was done in later simulations.
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FIG. 19. (Color) ACCSIM run for the distribution with initial
asymmetry. Time evolution of rms emittances for working point
with zero-current tunes �nx , ny� � �5.82, 5.75�. Emittance in x
is shown in blue and emittance in y is shown in red.
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During the course of these studies an additional con-
cern surfaced [7] that excitation of odd order modes could
be a feature of the code which we are using. Therefore,
similar cases were run with the ACCSIM code [8]. In these
runs, beam intensity and corresponding space-charge tune
shift were increased by approximately a factor of 2. Also,
the ratio of full-current tunes was chosen in accordance
with Fig. 1 to have a significant emittance exchange. As
a result, emittance exchange was observed on much faster
time scale. Figures 19 and 20, obtained from an ACCSIM

calculation, show an excitation of the third order (odd)
beam mode when there is an initial asymmetry in the nu-
merically generated KV distribution. Figure 19 shows an
exchange of rms emittances between the two transverse
planes, and Fig. 20 shows development of an odd order
mode. In fact, this odd mode structure is strikingly similar
to the odd mode observed in [3]. When the initial distribu-
tion is forced to be symmetric by the distribution generator,
for the same case, we observe excitation of the even mode
instead, as demonstrated in Fig. 21.
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FIG. 20. (Color) ACCSIM run for the distribution with initial
asymmetry. X-Y projection after 40 turns (working point with
zero-current tunes 5.82, 5.75).
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FIG. 21. (Color) ACCSIM run for initially symmetric distribution.
X-Y projection after 40 turns.
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IV. MAJOR FEATURES OF COUPLING
RESONANCE EXCITATION

This section provides additional arguments that support
our explanation that the observed structures and associ-
ated emittance growth appear to be due to an excitation
of high-order coherent beam modes via the space-charge
coupling resonance, with a subsequent resonant interac-
tion of individual particles and coherent beam modes. For
this reason, we refer to the latter stage of this process (af-
ter the coherent mode is developed) as an intrinsic reso-
nance. The space-charge coupling effect discussed here
for a KV beam demonstrates the difference between the
single-particle approach and the coherent mode approach
adopted by Hofmann [2]. Based on the single-particle ap-
proach (Montague resonance [9]), even a numerical KV
beam does not have sufficient nonlinear strength to pro-
vide coupling. However, the collective mode approach
[2,10] clearly demonstrates that small initial fluctuations
in KV distribution can grow exponentially, thus providing
a mechanism for space-charge coupling. Some important
features are summarized below.

(i) The rms mismatch of the beam corresponds to an ex-
citation of second order (envelope) modes which results in
a parametric 1:2 (the frequency of individual particles is
half the envelope frequency) resonance. This becomes the
dominant effect making the observation of intrinsic reso-
nances with high-order collective modes possible only in
the absence of significant rms mismatch. This statement
was confirmed in our simulations: the results shown here
were obtained from the evolution of carefully matched ini-
tial distributions. The use of even mildly mismatched ini-
tializations led to strong and dominant intrinsic resonance
with the second order mode. This is explained by the
fact that, for very weak tune depression (around 2%), the
growth rate of instabilities, which drive high-order collec-
tive beam modes, is very slow.

(ii) Another feature of this coupling resonance is the
time evolution of the process. Excitation of a high-order
coherent beam mode and subsequent intrinsic resonance
requires several hundred turns for low space charge (typical
tune depression in high-intensity rings 1%–3%). On the
contrary, resonance of individual particles with the lattice
harmonics would occur much faster.

(iii) For a KV beam, the distribution employed in these
studies, there would be significant difference between an
intrinsic resonance with slowly developed high-order col-
lective mode and a resonance with the lattice harmonic.
Because all particles in a KV beam have similar frequen-
cies, resonance with a lattice harmonic would be of a co-
herent nature, with all particles responding in a coherent
way. In the intrinsic resonance, only a small portion of the
beam enters a beam halo due to the nonlinear detuning.
This agrees with the results of present simulations, as well
as with the well established picture of parametric halo for-
mation in high-intensity linacs.
084202-6
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FIG. 22. (Color) Third order lattice resonance for KV beam only
after 10 turns.
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FIG. 23. (Color) Time evolution of second order beam moments
(envelopes) with very fast third order lattice resonance (in nor-
malized units). Horizontal beam envelope (blue) and vertical
beam envelope (red).

For completeness, we now demonstrate the response of
a KV beam to a lattice resonance. For this purpose, we
increased the beam intensity and changed the beam aspect
ratio in such a way that the depressed vertical tune be-
comes close to the lattice harmonic n � 16. We now ex-
pect a very fast coherent response of the KV beam. This is
clearly demonstrated in Figs. 22 and 23. Figure 22 shows
the vertical phase space after 10 turns. One can see the
coherent response of a KV beam to a lattice resonance.
The corresponding fast blowup of the beam envelope is
shown in Fig. 23. We again alter the beam intensity so
that the depressed tune in y becomes close to the fourth
order resonance with lattice harmonic n � 20, and the de-
pressed tune in x is near the sixth order resonance with
n � 32. The observed resonances again clearly demon-
strate the fast and coherent response of a KV beam. Such
resonances are well-known lattice resonances and should
not be mixed with the space-charge coupling resonant ex-
citation discussed in this paper.
084202-7
V. APPLICATIONS

A. SNS accumulator ring

The space-charge coupling effect, described in this pa-
per, is based on the studies of full intensity beams. In the
SNS, accumulation is done via multiturn injection with
the final intensity reached only at the end of the injec-
tion process. The beam is then extracted without a long
storage time. The growth rates of the instabilities consid-
ered here are very slow, even for full-current beams (which
correspond to 2% tune depression) compared to the high-
intensity linacs. In addition, the multiturn injection paint-
ing may easily wash out the resonant excitation, described
in this paper, due to phase mixing and injection mismatch.
As a result, the instability process observed here is not ex-
pected for the SNS accumulator ring beam parameters and
the types of working points discussed in this paper.

B. High-intensity storage rings

In this section, we discuss whether the instability
process studied in this paper should be expected in high-
intensity rings with long time storage of full intensity
beams. We note that the studies presented here are based
on the KV beam. The KV distribution is an excellent
distribution to use for analytic calculation, but it is not
very realistic. We therefore performed similar simulations
with the Waterbag and Gaussian distributions, for which
we did not observe instabilities of high-order beam
modes, which are the subject of present studies. This is
not surprising since realistic distributions have frequency
spread and, thus, effective Landau damping. A more
detailed explanation could be given based on the recent
studies [11], which indicate that one type of unstable
mode observed for a KV beam gets damped for non-KV
distributions. The other type of modes, which can lead
to similar instabilities in realistic non-KV beams, has
different instability regions and requires much stronger
tune depression to become unstable. The situation also
changes when the emittances in the two planes differ
significantly. For completeness, we note that simulations
presented in this paper were done for an unbunched KV
beam with a small energy spread of Dp�p � 0.7%. This
slightly modified the tune shifts of individual particles
and added the tune spread. In this paper, we do not study
the effect of significant energy spread or synchrotron
motion which could significantly alter the excitation of
high-order coherent modes. For the SNS beam, some
discussion of energy spread and its combined effect with
space charge can be found in [12,13]. To summarize,
for beam parameters discussed in this paper, the unstable
high-order collective modes are expected mainly for the
KV distribution rather than for realistic beams. However,
for high-intensity circular accelerators with significant
tune depression and/or different transverse emittances,
the excitation of high-order collective beam modes and
084202-7
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associated emittance growth could be a potential source
of beam halo, and, thus, this effect should be carefully
explored.

VI. SUMMARY

This paper explains the nature of the previously ob-
served resonant structure for the former SNS working point
with close transverse tunes [1]. It is found that various
high-order collective beam modes can be excited as long
as the instability condition is satisfied in the vicinity of the
space-charge coupling resonance. The excitation of such
modes and associated resonances was thoroughly investi-
gated and presented in this paper. These studies signifi-
cantly contribute to our understanding of the space-charge
coupling resonances and have direct application to the
choice of a working point in future high intensity circu-
lar accelerators.
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APPENDIX: FREQUENCY ANALYSIS

The observed fourth order structure was first attributed
to a nonstructure resonance with an integer lattice har-
monic excited by the space charge [1]. However, the ap-
pearance of such harmonics for the ideal lattice with four
superperiods in the absence of magnet errors is problem-
atic. We thus derive expressions for the sidebands of the
lattice harmonics due to space charge, starting with the
analysis of the matched beam in the absence of lattice
errors.

A. Vertical motion

We assume a KV beam with transverse dimensions
sx , sy . The corresponding single-particle equation of
motion is

y00 1 Ky�s�y �
2I

sy�sx 1 sy�
y , (A1)

where I is the space-charge parameter. Using the trans-
formation y �

p
by y, df � ds��byny�, the equation of

motion becomes

ÿ 1 n2
yy �

2I
sy�sx 1 sy�

b2
yn2

yy , (A2)

where ny is zero current tune. We now assume sx 1

sy � 2s̄ to be independent of s, which is approximately
true in a typical alternating gradient (AG) focusing struc-
ture. We also retain the ripple in the space-charge term due
084202-8
to the betatron function. Thus, the equation of motion can
be rewritten as

ÿ 1 n2
yy �

Î
sys̄

�1 1 p cosnf�y , (A3)

where p cosnf represents the f variation in the lat-
tice, with n being a multipole of the lattice periodicity
(4, 8, 12, . . . in the SNS case), and Î � Ib̄2n2

y . The
corresponding envelope equation is

s̈y 1 n2
ysy �

Î
s̄

�1 1 p cosnf� 1
e2

y

s3
y

. (A4)

For the matched beam, we have

n2
y �

Î
sys̄

1
e2

y

s4
y

. (A5)

Taking sy � s̄�1 1 z�, we obtain the equation for small
beam oscillations,

z̈ 1

µ
n2

y 1
3e2

y

s̄4
y

∂
z �

Î
s̄2 p cosnf , (A6)

where we have assumed antisymmetric beam envelope os-
cillation with x and y motion 180± out of phase. We should
note that, for a round beam with the identical horizontal
and vertical tunes, there are both symmetric and antisym-
metric modes. One would expect that the antisymmetric
mode is most likely to get excited due to the AG focusing.
When the tunes are sufficiently split, the motion in x and y
is essentially decoupled, which modifies the expression for
the envelope frequency V2 � 2n̄. This will be taken into
account later in our numerical estimates. We now rewrite
the above equation as

z̈ 1 4n̄2
yz �

Î
s̄2 p cosnf , (A7)

where n̄y � ny 2 3Dny�4 with V2 � 2n̄ being the enve-
lope frequency. Thus, we have the following solution for
sy�s̄ � 1 1 z:

sy

s̄
� 1 1

Î
s̄2

p cosnf

4n̄2
y 2 n2 1 C cos�2n̄yf 1 a� , (A8)

where C is some constant of integration. From Eq. (A8),
the spectrum of the oscillations of �y2� should contain
the following harmonics: n, 2n, n 1 2n̄y , jn 2 2n̄yj,
2n̄y , 4n̄y , etc. We now try to identify these frequencies
from the frequency spectra obtained from numerical
calculations. Simulations were carried out with a KV
beam for the previous FODO SNS lattice with a working
point �nx , ny� � �5.82, 5.77� and a space-charge tune shift
of about 0.08. We note that in the Appendix we analyze
the data based on simulations with the ACCSIM code [1,14].
A detailed comparison of ACCSIM with ORBIT done by Jeon
[7] showed that tunes in the vertical direction are slightly
less depressed with the ACCSIM code by approximately
dn � 0.015 compared to the ORBIT code. As a result,
the emittance exchange is still possible in simulations
with the ACCSIM code while with ORBIT ny � 5.77 already
084202-8
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falls outside of resonance bandwidth as shown in Fig. 1.
For this reason, an equivalent emittance exchange with
the ORBIT code may be obtained by slightly adjusting the
vertical zero current tune to ny � 5.79. We now proceed
with the analysis of the frequency spectra. The spectrum
of �y2� is presented in Fig. 24 in the frequency range from
1 to 25. First, we identify major peaks at n � 4, 8, 12, 16,
20, and 24 which are the harmonics of the lattice with the
superperiodicity 4. The other peaks should come from the
superposition of n and 2n̄y , as described above. Also,
the amplitude of the peaks in the frequency spectrum
should decrease with the increase of harmonic number
n. We note that the frequency n̄y of the antisymmetric
envelope mode occurs for the round beam when tunes in
x and y are close to one another. In the numerical example
under investigation, nx 2 ny � 0.05 and Dn�4 � 0.02,
so that we expect decoupled motion in x and y with the
envelope frequency V2 � 2n̄y � 2�ny 2 5Dn�8�. This
slightly affects the numerical value of n̄y which we need
to use but does not change our general discussion about
the sidebands of the major harmonics. By assuming
n̄y � 5.725, we expect

11.45 � 2n̄y ,

7.45 � 2n̄y 2 4 ,

15.45 � 2n̄y 1 4 ,
(A9)

3.45 � 2n̄y 2 8 ,

and small peaks (due to the superposition with large values
of n),

12.55 � 24 2 2n̄y

8.55 � 20 2 2n̄y

4.55 � 16 2 2n̄y

19.45 � 2n̄y 1 8 ,
(A10)

23.45 � 2n̄y 1 12

0.55 � 12 2 2n̄y �not plotted� .
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FIG. 24. (Color) Spectrum of �y2� after 250 turns (working point
5.82, 5.77).
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These numbers are the sidebands observed in Fig. 24.
Also, there is no visible evidence of 4n̄y � 22.9, which
suggests that C in Eq. (A8) is small.

For an ideally populated symmetrical KV distribution
we expect �y� to be zero, which is confirmed by the
�y� spectrum. As follows from Eq. (A3), an asymmetric
bunch should have harmonics n 6 n̄y (no combinations
with 2n̄y).

B. Horizontal motion

To correctly predict the allowed frequencies in beam
oscillations, we must include the effect of dispersion. We
start with the Hamiltonian without space charge,

H �
p2

x

2
1

Kx�s�
2

x2 1
m2c4

E2
0

d2 2
x

r�s�
d , (A11)

where the longitudinal momentum is p0�1 1 d�. The
equation of motion in x is

x00 1 Kx�s�x �
d

r�s�
, (A12)

with d � Dp�p0. The solution of this equation is

x�s� � xb�s� 1 D�s�d , (A13)

where xb is a general solution describing betatron motion,
and satisfies

x00
b 1 Kx�s�xb � 0 . (A14)

The term D�s�d in Eq. (A13) is a particular solution of
Eq. (A12) where D�s� refers to the local dispersion func-
tion and satisfies

D00 1 Kx�s�D �
1

r�s�
. (A15)

We now use the transformation D �
p

bx B,
df � ds��bxnx�, x�s� �

p
bx u�f� to obtain

ü 1 n2
xu � 0, B̈ 1 n2

xB �
n2

xb3�2
x

r�s�
. (A16)

To include space-charge terms we again assume a KV-like
beam and obtain

ü 1 n2
xu � n2

xb2
x

2I
sx�sx 1 sy�

u , (A17)

B̈ 1 n2
xB � n2

xb2
x

2I
sx�sx 1 sy�

B 1
n2

xb3�2
x

r�s�
. (A18)

Similar to the vertical motion, we thus have

ü 1 n̄2
xu �

Îu
s̄2 p cosnf , (A19)

B̈ 1 n̄2
xB �

ÎB
s̄2 p cosnf 1 n2

xq cosnf , (A20)

where q cosnf comes from the periodic variation of 1�r.
Thus, for a bunch which starts out with symmetry (�xb� �
0), oscillations of �x� should contain natural frequencies of
D: n, n 6 n̄x . This is confirmed by frequency spectrum
084202-9
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FIG. 25. (Color) Spectrum of �x2� after 250 turns.

of �x�. For the frequencies of envelope oscillations �x2�,
we have

�x2� � �x2
b� 1 2�xbD�d 1 d2�D2� . (A21)

In addition to harmonics n, n 6 2n̄x , 4n̄x , we now expect
peaks at n 6 n̄x which should be relatively small because
they are proportional to d. This is again confirmed by
Fig. 25. Some discussion of the combined effect of space
charge and Dp�p on the tune spread of the SNS beam can
be found in [12,13].

C. Application to observed fourth order structure

The y-py phase space snapshot taken at 250 turns re-
sembles the structure of a fourth order resonance (simi-
lar to the phase-space plots presented in the main body of
this paper). Simulations were performed without magnet
errors and, therefore, exclude the appearance of arbitrary
harmonics in beam oscillations. Hence, due to the super-
periodicity 4 of the lattice, n � 23 is not allowed. Also,
the above analysis and the simulation results both show
that superposition of lattice harmonics n with n̄y does not
produce harmonic 23. Thus, no fourth order nonstructure
lattice resonance is expected for the matched beam based
on the above analysis.

The analysis developed above was based on the enve-
lope equation, which correctly describes only second order
beam modes. In addition, the beam can have higher-order
modes. High-order coherent mode frequencies can be cal-
culated using the Vlasov equation. For a KV beam in the
smooth focusing approximation they are available in the
literature [2,15]. The inclusion of AG flutter does not sig-
nificantly change the eigenfrequencies unless we are near
the lattice resonances [16]. Thus we can apply these coher-
ent frequencies to the lattice under discussion. The gen-
eral form of these frequencies is Vm � m�n0 2 CmDn�.
The coefficient Cm is significantly different from unity
only for m � 2, especially for a symmetric mode. In
the case of a fourth order antisymmetric mode we have
084202-10
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FIG. 26. (Color) Spectrum of �y4� after 250 turns.

V4 � 4�n0 2
31
32Dn�. With our previous assumption of

n̄y � 5.7 we thus have V4 � 22.8. In fact, Fig. 26 shows
a peak around this number. Based on this spectrum analy-
sis, the nature of the observed resonance appears to be
associated with the development of a high-order collective
beam mode driven by the space-charge coupling resonance
rather than with the lattice harmonics. At a later stage of
the calculation, we observe the resonance between indi-
vidual particles with depressed tune and the fourth order
coherent beam mode (4ñy � V4) as these particles enter
the halo.
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